دراسة تجريبية: الخصائص الكينماتيكية لكرات الطاولة البلاستيكية الجديدة ذات ال 4 ملليمتر

د. رجبان محمد عبد اللطيف
د. شريف فتحي صالح
د. محمد السيد عبد المجيد

المقدمة ومشكلة البحث:

طورت رياضات تنس الطاولة في السنوات الأخيرة من القرن العشرين، ومع بداية الألفية الثالثة تفتح أفاقًا مستقبلية لزيادة هذا الطلب، وذلك عن طريق استغلال واستثمار الأفكار الحديثة للعلوم المختلفة، التي يمكن تطبيقها للاستفادة منها بطريقة تسمح بالتطور، وبدأ عبد جدهد فتنثما يقارب من 160 عامًا من استخدام كرة تنس الطاولة المصنوعة من celluloid مادة الصلب. أصدر الاتحاد الدولي لتنس الطاولة تعديلات في القانون (ITTF) الدولي، حيث أنه الجهة المسؤولة عن اعتبار البدائل والتصنيع باستخدامها سواء في التدريب أو المباريات، باستبدال الكرة المصنوعة من مادة الصلب بالكرات البلاستيكية celluloid الجديدة.png

على أن تطبق اعتبارًا من الأول من يوليو 2014 ولم تلزم الإحصاءات القارية والأهلي بتلبثتها في المسابقات الدولية، وعلى ضوء هذه التعديلات ونظراً للآثار التي يمكن أن تنتج عن تغيير هيكل مباريات تنس الطاولة، وكذا على الجوانب المهارية والخريطة لدى اللاعبين، وخاصة لاعبي المستويات المالية، توقع للانقاذ بمستوى تلك الدراسة (2014).

وهذا ما أكد "شريف فتحي صالح" (2011) أن تطوير المهارات الأساسية في ضوء التغيير في القواعد الرسمية للعبة أمرًا بالغ الأهمية يحتاج إلى نظرة جديدة لبرامج التدريب في تنس الطاولة بصفة عامة، وعلي برنامج تدريب الناشئين بصفة خاصة. (1:159) .

وينص قانون الاتحاد الدولي لتنس الطاولة (ITTF) (2014) على صناعة الكرة من مادة الصلب أومادة بلاستيكية شبيهة يكون لونها أبيض أو أصفر أو برتقالي بحيث يكون معتماً وغير عاكس للضوء. يجب أن تكون كروية الشكل ذات قطر 40 ملليمتر. وزنها 2.7 جرام، وتحمل شعار ال + 4.4 مللي ليسمى الفرقة عن كرة الصلب 40 مللي، وذلك من أجل زيادة جاذبية اللعبة، وزيادة الدخول المالي من التلف التلفزيوني، فمنذ عام 1980 حتى عام 2000 كان قطر الكرة 38 ملليمتر (الجيل الأول)، وعام 2001 تغير فاصبح 40 ملليمتر (الجيل الثاني) على أن وهو المنتجات شديدة الانتشار، والمبتكرة في الهواء، celluloid تصنع من مادة الصلب، وعملياً النتائج بقسم المناهج وطرق التدريس بكلية التربية الرياضية - جامعة طنطا.
وجدت اللجنة الأولمبية الدولية في الميثاق البيني لها أنها موقعة من المواد الخطرة في المنتجات الرياضية على النحو التالي: "يغري أعضاء الحركة الأولمبية الدولية بتجربة استخدام المنتجات الرياضية الخطرة أو السامة للإنسان أو الملوثة للبيئة، وبوصف الاتحاد الدولي لتنس الطاولة poly (balls) TTF، اعتقد عام 2004 استبدالها من مادة البيلاستيك إلى مادة البلاستيك الاحلي (الجيل الثالث) ذات ال + 0.4 مللي. (16)

ومن خلال خبرة الباحثون في مجال التدريب كمدربو وكوين أحدهم رئيس للجنة المدربين (ETTA)، بالإتحاد المصري لتنس الطاولة، ومقرراً للجنة العلمية بالإتحاد المصري لتنس الطاولة (ETTA)، والأيضاً حاصل على درسات تدريب دولية المستوى الثاني من الإتحاد الدولي، ومن المتضمنة للدورة، فإن الباحثون يرون أن التغيير في تركيبة الكَرة يمكن أن يؤدي إلى تغييرات عديدة في الجانب الممارسي والمتبقي، والتي هي مفروضة على لاعبي تنس الطاولة في جميع أنحاء العالم وحيث أن المسافة بين اللاعبين قريبة جداً من بعضهم البعض ويمكن (1) ملليمتر يكون الفرق بين ضربة ناجحة واتخاذ فاصلة، فإن تلك الاختلافات الصغيرة تكون مهمة جداً، والسؤال الذي في أذهان الجميع كم من الوقت سوف يستغرق بالنسبة للمحترفين لتكيف مع الكَرة البلاستيكية الجديدة (الجيل الثالث) ذات ال + 0.4 مللي وخصوصاً في مرحلة الناشئة، فإنه على حد علم الباحثون لا توجد دراسة تتناول الخصائص البلاستيكية لكرة تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال + 0.4 مللي، وللعل هذه الأساليب يسعى الباحثون إلى التعرف على بعض هذه الخصائص البلاستيكية للكِرة تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال + 0.4 مللي، حيث تتضمن هذه المعلومات دوراً هاماً في تحرير أفضل نوع من أنواع كرة تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال + 0.4 مللي ليستعملها اللاعبين المهرجرين ويدعمها على التشخيص العلمي، والذي يعتبر نوع من الاستدلال الموجه نحو خيارات الحلول البيوميكانيكية لإعداد المشكلات المحددة في رياضة تنس الطاولة. فيرَى الباحثون أنه لتقني كرة تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال + 0.4 مللي، توجد ثلاثة طرق أولية يتم استخدامها لتحديد تأثيرها على الأداء: أولاً بواسطة لاعبي تنس الطاولة وهو قياس غير موضوعي ثانياً بواسطة مصمع الكَرات وهو أيضاً قياس غير موضوعي، ثالثاً من خلال التحليل البيوميكانيكي لخصائص الكَرة تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال + 0.4 مللي بعد اصطدامها بالمضرب وهي موضوعي إلى حد كبير.
هدف البحث:

يهدف هذا البحث إلى التعرف على بعض الخصائص الكيميائية لكرة تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال + 0.4 مللي (بالحز، وبدون الحز).
- توضيح الفرق في سرعة الكرة بسبب أنواع كرة تنس الطاولة البلاستيكية الجديدة (الجيل الثالث).
- مقارنة كرة تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال + 0.4 مللي (بالحز، وبدون الحز).

تساؤلات البحث:

يحاول البحث الإجابة عن التساؤلات الآتية:
- ما الخصائص الكيميائية لكرة تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال + 0.4 مللي?
- باستخدام الماركات المختلفة من الكرات؟
- ما أسرع (الفروق) نوع من أنواع كرة تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال + 0.4 مللي (بالحز، وبدون الحز)؟

المصطلحات المستخدمة في البحث:
- كرة تنس الطاولة ذات ال + 0.4 مللي بالحز (ملحوظة) (seam) : كرة تنس الطاولة مصنوعة من نصفين من مادة البلاستيك ويتصلقا لتشكيل الكرة، ويتم لحمها لتصبح جزء واحد، ويظهر خط اللحام.
- كرة تنس الطاولة ذات ال + 0.4 مللي بدون الحز (غير ملمحوبة) (seamless) : كرة تنس الطاولة مصموية من مادة البلاستيك مباشرة لتشكيل الكرة من جزء واحد، ولايظهر خط اللحام. (4 : 2)

الدراسات السابقة:

1- أجرى كندريليك مرين وآخرون "2007" دراسة موضوعية:
- تحليل حركي للضربة ذات الدوران العلوي باستخدام كرات مختلفان في الاحجام، وتهدف: معرفة الاختلافات في الدراسة ذات الدوران العلوي لكرة تنس الطاولة ذات 40 ملميتر، وكرة ذات 38 ملميتر المصنوعة من مادة السيليكون، وقداستخدم المنهج التجربى، وبلغ حجم العينة (4 لاعبين، 2) كرات مختلفتان في الاحجام (40 ملميتر بداء اللاعبين).
- ذات الدوران العلوي، الأدوات: قانف كلار، كرات تنس طاولة، مضرب تنس طاولة، كاميرا عالية السرعة، وشمل النتائج: أثبتت المقارنة بين المعايير الحركية قيد البحث أن زيادة الفروق في الدراسة ذات الدوران العلوي بين اللاعبين نتيجة لزيادة حجم الكرة، الفرق في
الأسلوب هو أن اللاعّب يستخدم المزيد من القوة للذراع المستخدمة لإنتاج نفس السرعة والدوران للكرة (3)

Dirk Meyer, Konrad Tiefenbacher

دراسة موضوعها: تقييم الاختلافات في الارتداد على مضرب اللاعب وتهدف: معرفة العلاقة بين السرعة والدوران عندما ضرب نوعين مختلفين من الكاراتات للمضرب في ضربات تنس الطاولة من خلال استخدام أراء اللاعبيين، وقد استخدم المنهج التجربي، وبلغ حجم العينة (1) لاعبيين، (2) كرات مختلفة وغير معتمدة من الاتحاد الدولي لتسه الطاولة بداء اللاعبيين لمهارة الضربات الراقية الأمامية، وذات الدوران الأمريكي، الأدوات: كرات تنس طاولة، مضرب تنس طاولة، أراء اللاعبين، أهم النتائج: عدم قدرة اللاعبين على التكيف مع الكرة الجديدة، اختلاف أراء اللاعبين الشخصية حول سرعة الكرة (2)

Kei Kakajima & Others

دراسة موضوعها: تأثير طاولات مختلفة الماركات على الارتداد الكرة في تنس الطاولة وتهدف: قياس معدل الارتداد للكرة و الدوران ومعامل الاحتكاك الحادث بين طاولات تنس الطاولة والكرة، وقد استخدم المنهج: التجربي، وبلغ حجم العينة (3) ثلاثة طاولات مختلفة الماركات، (3) كرات مختلفة الماركات ذات 4مليونتم شركات مختلفة ومعتمدة من الاتحاد الدولي لتسه الطاولة بداء اللاعبيين لمهارة الضربة ذات الدوران الأمريكي المصنوعة من مادة السيليزيا، الأدوات: قاذف كرات، كرات تنس طاولة، مضرب تنس طاولة، كاميرا عالية السرعة، أهم النتائج: تأثير أداء اللاعب اعتناء على الاحتكاك بين طاولة تنس الطاولة والكرة المستخدمة، أن مسار الكرة اختفت بكميات صغيرة على أساس معدل الاحتكاك بين طاولة تنس الطاولة والكرة، عدم القدرة على معرفة التغييرات التي تحدث في الكرة المرتدة من طاولات مختلفة الماركات (1)

التعليقات على الدراسات السابقة:

من خلال العروض السابق ستخلص الباحثون الآتي:

الأهداف: 1- تتنوع الأهداف ما بين معرفة الاختلافات لضربة ذات الدوران العلوي لكرة تنس الطاولة ذات 438 مللي، وقياس معدل الارتداد الكرة، والدوران ومعامل الاحتكاك الحادث بين طاولة تنس الطاولة والكرة.

المنهج: تتنوع المنهج المستخدم بين الوصفي والتجريبي.
4- العينات: كرات تنس الطاولة ذات 38.4 ملليمتر المصنوعة من مادة السيليكون، لاعبين جامعيين.

5- وسائل جمع البيانات: اعتمدت معظم الدراسات على أداء اللاعبين، قاشف الكرات، برامج تحليل حركي.

الاستفادة من الدراسات السابقة: يوجد أن معظم الدراسات التي تمت في رياضة تنس الطاولة لم تتعارض للخصائص الكيميائية لكنه تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال 4 مللي، ومعتمدة من الاتحاد الدولي لتنس الطاولة، وكذلك اختيار المنتج المناسب لطبيعة إجراء البحث، تحديد طريقة اختيار العينة، اختيار أساليب إحصائي مناسب لنوع البحث، كيفية تصوير وتحليل المتغيرات على البحث.

إجراءات البحث:

منهج البحث: استخدمو الباحثون المنهج التجريبي واستعان بالتصوير بالفيديو والتحليل الحركي عن طريق حاسب الآلي (الكمبيوتر).

عينة البحث: عينة عمودية قوامها (2) سنة أنواع مختلفة من كرات تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال 4 مللي، والثلاثة نجوم الخاصة بالمباريات، ومعتمدة من الاتحاد الدولي لتنس الطاولة (ITTF) طبقاً لتقرير الاتحاد الدولي لتنس الطاولة عام 2014 (مرفقاً)

جدول (1)

<table>
<thead>
<tr>
<th>النوع (ماركة)</th>
<th>الملاحظات</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donic</td>
<td>بدون حز</td>
<td>1</td>
</tr>
<tr>
<td>palio</td>
<td>بدون حز</td>
<td>2</td>
</tr>
<tr>
<td>DHS</td>
<td>بالحز</td>
<td>3</td>
</tr>
<tr>
<td>Tibhar</td>
<td>بالحز</td>
<td>4</td>
</tr>
<tr>
<td>XUSHAROF</td>
<td>بالحز</td>
<td>5</td>
</tr>
<tr>
<td>HANNO</td>
<td>بدون حز</td>
<td>6</td>
</tr>
</tbody>
</table>

*** كرات مباريات

ويرجع اختيار الباحثون لعينة البحث التالية:

1- جميعها معتمدة من الاتحاد الدولي لتنس الطاولة.

2- جميع الأنواع تنتمي إلى التركيبات الفيزيائية والكيميائية طبقاً لشروط الاتحاد الدولي لتنس الطاولة.

حيث الهدف من البحث هو التوصل إلى التقدير الكمي لخصائص كرات تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال 4 مللي، والثلاثة نجوم الخاصة بالمباريات، حيث قام

كلية التربية الرياضية للبنين بالمرج جامعة داوان

Web: www.isipes.com E-mail: info@isipes.com Tel: 01067069843
الباحثون يتخصصون تخصص المحاولات في تصويرها من ثمانون محاولة إلى أثني عشر محاولة، وقد تم تعميم المحاولات في الفصول الصحيحة.

وسائل جمع البيانات:

- استخدم الباحثون وسائل جمع البيانات التالية:
 1- جهاز Qaaf شرط فيديو ماركة بترفالي (مرفق) 2012.
 2- عدد (1) كاميرا تصوير فيديو ماركة ناشيونال موديل رقم M3000EM بواقع 25 كادر في الثانية.
 3- عدد (1) حامل ثلاث قصير، عدد (1) شريط فيديو كاسيت.
 4- علاجات مضادة وإرشادية.
 5- شريط قياس بالمتر.
 6- Flasher
 7- جهاز ومضايا لقياس السرعة.
 8- عدد (1) طلاء مجوف معتمة من الاتحاد الدولي لتسهيل الطاولة ذات لون أزرق.
 9- مضرب تتساطل زاوية قيمة، ذو جلدة ناعمة إلى الداخل، سفينة 9.1 مم ماركة دونك.
 10- عدد (10) أداة طلاء بالألوان البالستيكية الجديدة (الجيل الثالث) ذات ال 50 مللي المثلثية للاستخدامات المختلفة.
 11- عدد (1) شبكة واحدة معتمة من الاتحاد الدولي لتسهيل الطاولة.

الأدوات المستخدمة في التحليل الحركي عن طريق الحاسب الآلي:

1- Computer
2- Video Recorder
3- Printer
4- Video Blaster
5- Program التحليل الحركي
6- شاشة عرض
7- قناة البيوميكانيكي على الحاسب الآلي ببرنامج خاصة بالتحليل الحركي للرائد

و تحمل البيوميكانيكي على الحاسب الآلي ببرنامج خاصة بالتحليل الحركي للرائد

وهو صدر أبريل 2011، وهو يملأ التحليل الحركي من مستوى واحد أو أكثر تبعاً لأسلوب وطبيعة التصوير المستخدم ويتم التحليل وفقاً للخطوات الآتية.

1- تقليل الفيديو الفيديو إلى الحاسب الآلي وهو العملية التي تسمى VIDEOCUTURE
2- استخدام جهاز الفيديو في البرنامج حيث يقوم بحساب السرعة الكاميراً آلياً.
2- تقسيم فيلم إلى أجزاء كل جزء يشمل محاولة واحدة لنوع واحد من كرات تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال +40 ميلي والثلاثة نجوم الخاصة بالمباريات، وتقييم المحاولات ويقوم البرنامج بذلك آليا وقد تم تقسيم كل محاولة إلى ثلاثة مراحل:

• المرحلة الأولى: من خروج الكرة من جهاز قاذفة الكرة إلى لحظة التصادم (الكرة بالمضرب).

• المرحلة الثانية: من ارتداد الكرة (بعد التصادم) من المضرب حتى ملامسة سطح الطاولة.

• المرحلة الثالثة: من ملامسة الكرة لسطح الطاولة إلى بعد الارتداد من الطاولة.

1- تبدأ إجراءات التحليل الحركي وتشمل:

أ) تحديد محور الحركة وقد تم تحديدها هنا بنقطة مركز المضرب.

ب) تحديد مقياس الرسم من خلال العلامات الضائعة في الفيلم.

ج) اختيار المراحل المختارة للتحليل والكادرات والشكل رقم (1) يوضح بعض الكادرات الرئيسية للتحليل وقد تم استخدام نقطة مركز ثقل المضرب لمسار الحركة وفقا لما تم تحديده قبلي التصوير.

2- يقوم البرنامج آليا بحساب دوال التغيير اللحظي على كل من المحور الأفقي (x) والرأسي (y) وحساب الدوال الرئيسية للسرعات (v) والعلقات (a) والازمة (t) لكل مرحلة ممن المراحل المحددة، ثم تخزين ذلك بعد عرضه في شكل بياني مثالي لكل حالة والشكل رقم (2) يوضح ذلك.

3- تخزين وطباعة النتائج.

التجربة الاستطلاعية:

قام الباحثون بإجراء دراسة استطلاعية وذلك يوم 18 / 12 / 2014 بنفس الأدوات المستخدمة في التجربة الأساسية وذلك بصالة تدريب تنس الطاولة بكلية التربية الرياضية - جامعة طنطا.

الغرض من الدراسة الاستطلاعية:

4- تجهيز مكان التصوير واختيار التوقيت المناسب.

5- تحديد المسافة المناسبة لوضع آلات التصوير التلفزيونية.

6- تحديد مجال الحركة داخل مجال التصوير بالكاميرات.

7- تحديد أماكن ثبيت مقياس الرسم.

8- تحديد الارتفاع المناسب لوضع كاميرا التصوير وكذلك الارتفاع المناسب للتصوير.

9- التأكد من صلاحية الطاولة والشبكة والكرات والكشطات للمواصفات القانونية.

10- التأكد من ثبات ألوان الكرات (أبيض) وسطح الطاولة (أزرق) والخلفية أخضر قاتم.
11- التأكد من طريقة تثبيت المضرب على سطح الطاولة بطريقة صحيحة وزاوية المضرب (90 درجة على سطح الطاولة)، حيث قام الباحثون بتثبيت المضرب بطريقة خاصة على حامل فوق سطح الطاولة.

12- التأكد من عمل قاذف الكرات إلكتروني وتحديد سرعته المناسبة لوضع المضرب وهي 30 كرة/دقيقة، 10 كرة/دقيقة وأي بزمن 10 ثانية، 5 ثانية، وكذلك بالنسبة لسرعة تردد الكاميرا.

13- تحديد السرعات المناسبة لانطلاق الكرات من القاذف الإلكتروني وهي 91 م/ث، 97 م/ث.

(1: 132)

التجربة الأساسية:

قام الباحثون بالتجربة الأساسية من 12/1/2014-14/2/2014 بتصالصة تنس الطاولة بكلية التربية الرياضية - جامعة طنطا، باستخدام مضرب تنس الطاولة واحد ذو لاصق ثابت، وعدد (60) ستون ماضي تنس الطاولة البلاستيكية الجديدة (الجلد الثالث) ذات ال 400 ملأو وثلاثة نجوم بالإضافة للمباريات، والتي تم بسيط استخدامها في التمرين أو المباريات. حيث يؤكد زرتن هيوز Zartin Hughes (2014) أنه من الأفضل استخدام أصبع الكتف لاصق الخلطة لاصق السرعة المئية عند تحديد سرعة الجلة (التكسات) التي تحتاج لجافل جدة المضرب والانتظار على الأقل لمدة (20) بضعون يوما لا عادة لاصق نفس الجفة بلصق السرعة المئية الجديد قبل أن تصبح هذه الجفة (التكسات) جاهزة لإعادة لاصقها. (13: 12)

طريقة التصوير التلفزيوني:

تم تجهيز مكان التصوير بحيث يسمح بوضع كاميرا التصوير على الأبعاد والارتفاعات التالية:

1- وضع كاميرا على جانب الطاولة بارتفاع 15 أسم (76 سم ارتفاع الطاولة + 4 سم ارتفاع النراع المثبت الطاولة) عن الأرض وتبعد 15 سم عن الطاولة من الجانب الأيمن لمسار الكرة.

2- ثبت المضرب على حامل خاص على ارتفاع 3 سم من سطح الطاولة وثابت بها.

3- المسافة بين القاذف والمضرب تبلغ 10 أسم بواقع (0.750 سم مرفق (ج)

Table tennis robot:

تتحكى القاذف بوضع الكرة في أي مكان على الطاولة مستخدمًا دوران متعدد أو بدون، أيضًا بدقة وسرعات مختلفة، وقد استخدم الباحثون نوعان من السرعات القذف وهي 20 كرة/دقيقة، 40 كرة/دقيقة، وأي بزمن 3 ثانية، 5 ثانية وقف الكرة مباشرة على المضرب، وبدون أي نوع من الدورات ومرفق (ج) يوضح كيفية التصوير.
- تم حساب البيانات والمتغيرات موضوع البحث: المسافات الأفقية والرأسية، العقارب الأفقية والرأسية، العجلات الأفقية والرأسية، الأزمنة t، Vel, Vr، Vel, Vr.

- تم تقسيم كل محاولة إلى (3) مراحل مكونة للمحاولة الواحدة من نوع من كرات تنس الطاوية البلاستيكية الجديدة (الجيل الثالث) ذات ال +0 مللي والثلاثة نجوم الخاصة بالمباريات.

(شكل 1)
بعض الكادرات الرئيسية للتحليل البيوميكانيكي
المعالجات الإحصائية: استخدم الباحثون لتحقيق أهداف البحث المعالجة الإحصائية الآتية:
1 - تحليل التباين في اتجاهين مع أشياء التباين باستخدام فرق معنوي LSD.

2 - وكذلك تحليل التباين في اتجاه واحد لتحديد السرعة النهائية في المرحلة الثانية فقط بسرعة القذف الثانية.

عرض ومناقشة النتائج:

جدول (2)

لمتوسط الحسابي والانحراف المعياري (المتغيرات) الإحداثيات الأفقية X والرأسية Y والزمن المستغرق T لكل نوع من أنواع كرة تنس الطاولة البلاستيكية الجديدة في درجات التحليق.

<table>
<thead>
<tr>
<th>النوع</th>
<th>سرعة القذف</th>
<th>النوع</th>
</tr>
</thead>
</table>
| نوع الأول | 1 | 2 | دون حزام
| دونك Donic | 45.17 | 51.26 | 44.01 |
| نوع الثاني | 1 | 2 | دون حزام
| بالبو palio | 40.14 | 44.01 | 45.21 |
| نوع الثالث | 1 | 2 | د.ا.ش.ام
| DHS | 45.00 | 45.21 |
| نوع الرابع | 2 | 2 | بالحزام
| تيبهار Tibhar | 31.15 | 32.25 |
| نوع الخامس | 2 | 2 | زونسوفر + 4 بالحزام
| XUSHAOFO | 30.21 | 33.22 |
| النوع السادس | 3 | 3 | بدون حزام
| HANNO | 35.00 | 36.35 |
| النوع السابع | 2 | 2 | بدون حزام
| HANNO + 4 | 36.35 |
| النوع الثامن | 1 | 1 | زاولوس + 4 بالحزام
| المجموع الكلى | 31.25 |

يمتضح من جدول رقم (2) الخاص بالمتوسطات والانحرافات المعيارية (المتغيرات) للإحداثيات الأفقية X والرأسية Y والزمن المستغرق T لكل نوع من أنواع كرة تنس الطاولة البلاستيكية الجديدة في درجات التحليق أن بالنسبة للمحور الأفقية X تراوحت قيمة المتوسطات ما بين 27.63 (35.00) سم/ث وان أفضلهم كان هو النوع السادس HANNO = 36.35 سم/ث بينما الخليج HANNO + 4 دون حزام وكان (35.00) سم/ث لسرعة القذف على التوالي ، بالنسبة للمحور الرأسية Y تراوحت المتوسطات ما بين (15.76) سم/ث وان أفضلهم كان هو النوع الأول Donic.
لا يظهر التذكرة المذكورة

<table>
<thead>
<tr>
<th>النوع</th>
<th>نوع القذف</th>
<th>سرعة Vx cm/sec</th>
<th>Vx środków</th>
<th>Vx متوسط</th>
<th>Vx الأكثر الحساسية</th>
<th>Vx الأقل حساسية</th>
<th>Vx الحساسية الحادة</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donic</td>
<td>لا يوجد</td>
</tr>
<tr>
<td>Palio</td>
<td>لا يوجد</td>
</tr>
<tr>
<td>DHS</td>
<td>لا يوجد</td>
</tr>
<tr>
<td>Tibhar</td>
<td>لا يوجد</td>
</tr>
<tr>
<td>XUSHAOFO</td>
<td>لا يوجد</td>
</tr>
<tr>
<td>HANNO</td>
<td>لا يوجد</td>
</tr>
</tbody>
</table>

يتضح من جدول رقم (3) الخاص بالمتوسطات والانحرافات (المتغيرات) للإحداثيات الأفقية والزاوية للسرعات (V) لكل نوع من أنواع كرة تنس الطاولة البلاستيكية الجديدة كنترلية. تراوحت متوسطات السرعة ما بين HANNO 367.02 سم/ث ، وان أفضلهم كان هانو السادس 495.21 سم/ث للسريعاتcks على التوالي، وكمثال، فإن المحور الرأسي VV تراوها متوسطات ما بين 344.41 سم/ث، وان أفضلهم دونك+ 40 بدون حزم السرعة وكان 92.47 سم/ث لسرعتي القذف على التوالي.
 formulations and the differences in the measurements for the two hands and the ball. The data was analyzed using the normal distribution method. The results showed that the average speed of the ball in the right hand was higher than in the left hand. The differences in the measurements were statistically significant. The study also suggested that the use of an appropriate grip and the correct technique may improve the performance of the players.
جدول (5)
تحليل التباين للإحداثيات (المتغيرات) الإقليدية والرأسيّة والزمن المستغرق لكل نوع من أنواع كرة تنس الطاولة البلاستيكية الجديدة خلال التخريب

<table>
<thead>
<tr>
<th>الجرام</th>
<th>الذرة</th>
<th>مجموع المربعات</th>
<th>مجموع المربعات</th>
<th>مجموع المربعات</th>
<th>مجموع المربعات</th>
<th>M</th>
<th>F</th>
<th>M</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
</tr>
<tr>
<td>54</td>
<td>54</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
</tr>
<tr>
<td>64</td>
<td>64</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
</tr>
<tr>
<td>74</td>
<td>74</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
</tr>
<tr>
<td>84</td>
<td>84</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>1387459.7</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
<td>144533.8</td>
</tr>
</tbody>
</table>

** جدول (6) **
تحليل التباين للإحداثيات الإقليدية والرأسيّة والسرعة x للسرعات بين أنواع كرة تنس الطاولة البلاستيكية الجديدة خلال التخريب

<table>
<thead>
<tr>
<th>التأثير</th>
<th>M</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>التأثير العام</td>
<td>1387459.7</td>
<td>144533.8</td>
</tr>
<tr>
<td>تأثير نوع الكرة</td>
<td>144533.8</td>
<td>144533.8</td>
</tr>
<tr>
<td>تأثير سرعة الكرة</td>
<td>144533.8</td>
<td>144533.8</td>
</tr>
<tr>
<td>تأثير التفاعل بين نوع الكرة والسرعة</td>
<td>144533.8</td>
<td>144533.8</td>
</tr>
<tr>
<td>خط التقسيم</td>
<td>144533.8</td>
<td>144533.8</td>
</tr>
</tbody>
</table>

** دالة عند مستوى 0.01 **

جلبية التربة الرياضية للبنين بالمرح جامع حلوان
Web : www.isipes.com E-mail : info@isipes.com Tel : 01067069843
تحليل التباين للعجلات a والدوافع الأفقية, الرأسية, والأنبوبية للعجلات وكل نوع من أنواع كرة تنس الطاولة

<table>
<thead>
<tr>
<th>الالتباسية الجديدة خلال التجربة</th>
<th>العجلات</th>
<th>محور رأسي</th>
<th>محور أفقى</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a y cm/sec²</td>
<td>متوسط الدرجات</td>
<td>قيمة ف</td>
</tr>
<tr>
<td>التأثير العام</td>
<td>2218444.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تأثير نوع الكرة</td>
<td>4385415.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تأثير سرعة القذف</td>
<td>235342.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تأثير التفاعل بين نوع الكرة وسرعة القذف</td>
<td>235342.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>تأثير التفاعل بين نوع الكرة والسرعة الفاصلة</td>
<td>235342.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>نهاية البلاستيكية التالية (الجيل الثالث) ذات ال + 0.04</td>
<td>235342.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>المتغيرات المختلفة من الكرات؟</td>
<td>نهاية البلاستيكية التالية (الجيل الثالث) ذات ال + 0.04</td>
<td>235342.05</td>
<td></td>
</tr>
</tbody>
</table>
| يتضح من خلال (5) والخاص تحليل التباين للعجلات (المتغيرات) الأفقية, الرأسية, الزمن المستغرق لكل نوع من أنواع كرة تنس الطاولة البلاستيكية الجديدة خلال التجربة كان معنوي, حيث بلغت قيمة ف 2.056 سم/ث على المحور الرأسي x, وعلى المحور الرأسي y كان معنوي حيث بلغت قيمة ف 2.056 سم/ث, وعلى الزمن المستغرق كان معنوي حيث بلغت قيمة ف 2.056 سم/ث عند مستوى 0.01, ودراسة هذا التأثير وتحديد صدره من خلال لرجوع إلى قيمة ف مستوى معنوي يوضح أن تأثير نوع الكرة كان غير معنوي وكذلك تأثير السرعات والتفاعل بين نوع الكرة وسرعة القذف, بينما كان التأثير واضح من خلال التفاعل بين نوع الكرة وسرعة القذف ومرحلتي البداية (5) التحليل) الأمر الذي يؤكده على أن التأثير الحاد على المحور الأفقي x يرجع إلى تفاعل العوامل الثلاثة بشكل مجمو, وليس كل متغير على حدة حيث أن ذلك يشير إلى أن نوع الكرة وسرعة القذف ومرحلة التحليل تؤثر على قيمة المحور الأفقي x والمحور الرأسي y والزمن t وفقاً للتغيير الحاد في التأثير المتبادل بين المتغيرات الثلاثة.

يوضح من خلال الجدول رقم (2) والخاص تحليل التباين للعجلات a بالدوافع الأفقية, الرأسية, والأنبوبية لكل نوع من أنواع كرة تنس الطاولة البلاستيكية الجديدة خلال التجربة مع التفاعل أن قيمة ف للتباين العام على السرعة الأفقية Vx كان معنوي حيث بلغت قيمة Vx 2.056 سم/ث, وكذلك قيمة F للتباين العام على السرعة الرأسي Vx كان معنوي حيث بلغت قيمة Vx 2.056 سم/ث.
قيمة $v = 0.17$ سم/ث وهي معنوية عند مستوى 0.01 أيضاً، وبدارسة هذا التأثير وتحديد مصدره من خلال الربع إلى قيمة v ومستوى المعنوية يتبه أن تأثير نوع كرة تنس الطاولة البلاستيكية الجديدة في السرعة الأفقية V_x كان معنوي وبلغت قيمة $V_x = 1.04$ سم/ث. والسرعة الرأسية V_y كان معنوي أيضاً حيث بلغت قيمة $V_y = 2.32$ سم/ث وسرعة القذف والتفاعل بين نوع كرة تنس الطاولة البلاستيكية الجديدة وسرعة القذف كان غير معنوي، الأمر الذي يؤكّد أن التأثير الحاسم على السرعة الأفقية V_x والراسبة V_y يرجع إلى تفاعل V_x والراسبة V_y يرجع إلى تفاعل العوامل الثلاثة بشكل مجمّع وليس كل متغير على حدة.

حيث يشير إلى أن نوع الكرة وسرعة القذف ومرحلة التحليل تؤثر على السرعة الأفقية V_x والراسبة V_y وفقاً للتغير الحاسم في التأثير المنفصل بين المتغيرات الثلاثة. بينما أيضا تأثير التفاعل بين نوع كرة تنس الطاولة البلاستيكية الجديدة وسرعة القذف والمرحلة كان معنوي وبلغت قيمة $V_x = 2.32$ مم/ث وعلي السرعة الأفقية V_x والراسبة V_y على التوالي مما يشير إلى نوع كرة تنس الطاولة البلاستيكية الحديدية يؤثر في السرعة بشكل عام. ويؤكد على أن السرعة تتوقف على نوع الكرة المستخدمة في رياضة تنس الطاولة.

يتضح من الجدول رقم () والخاصل تحليل التباين للعجلات في اتجاهين للإحداثيات الأفقية x والراسبة y لكل نوع من أنواع كرة تنس الطاولة البلاستيكية الجديدة خلال التجربة مع التفاعل أن قيمة V_x للتأثير العام على العجلة الأفقية ax حيث بلغت قيمة $V_x = 0.95$ سم/ث وعلي السرعة الأفقية $V_y = 0.425$ سم/ث وعلي السرعة الرأسية V_y ومعنوية عند مستوى 0.01، وتعرف هذا التأثير وتحديد مصدره من خلال الربع إلى قيمة V_x ومستوى المعنوية يتبه أن تأثير نوع كرة تنس الطاولة البلاستيكية الحديدية خلال التجربة أيضاً معنوي حيث بلغت قيمة $V_x = 0.425$ سم/ث وعلي السرعة الرأسية V_y معنوية أيضاً عند مستوى 0.01. يتضح أن تأثير سرعة القذف وتأثير التفاعل بين نوع الكرة وسرعة القذف غير معنوي على العجلة الأفقية V_x وعلى العجلة الرأسية V_y، بينما كان التأثير واضح من خلال التفاعل بين نوع كرة تنس الطاولة البلاستيكية الحديدية خلال التجربة وسرعة القذف ومرافعة الأداء (التحليل الكينماتيكي) وبلغت قيمة 1.32 سم/ث وهي معنوية عند مستوى 0.01 على العجلة الأفقية V_x وعلي السرعة الرأسية V_y، الأمر الذي يؤكّد على أن التأثير الحاسم يرجع إلى كلاً من سرعة القذف، وتفاعل بين نوع كرة تنس الطاولة البلاستيكية الحديدية.
جدول (8)
مقارنة بين انواع كرة تنس الطاولة البلاستيكية الجديدة خلال التجربة للإحداثيات LSD الأفقية والرأسية والزمن المستغرق باستخدام

<table>
<thead>
<tr>
<th>النوع الأول</th>
<th>Donic</th>
<th>دون حز</th>
<th>+4</th>
<th>+4</th>
</tr>
</thead>
<tbody>
<tr>
<td>النوع الثاني</td>
<td>palio</td>
<td>بدون حز</td>
<td>+4</td>
<td>+4</td>
</tr>
<tr>
<td>النوع الثالث</td>
<td>DHS</td>
<td>بدون حز</td>
<td>+4</td>
<td>+4</td>
</tr>
<tr>
<td>النوع الرابع</td>
<td>Tibhar</td>
<td>بدون حز</td>
<td>+4</td>
<td>+4</td>
</tr>
<tr>
<td>النوع الخامس</td>
<td>XUSHAOFO</td>
<td>بدون حز</td>
<td>+4</td>
<td>+4</td>
</tr>
<tr>
<td>النوع السادس</td>
<td>HANNO</td>
<td>بدون حز</td>
<td>+4</td>
<td>+4</td>
</tr>
</tbody>
</table>

** دالة عند مستوى 0.05**
جدول (4)
مقارنة بين كرة تس الطاولة البلاستيكية الجديدة خلال التجربة للإحداثيات الأفقيةX والرأسيةY لسرعة
العلاجات باستخدام LSD

<table>
<thead>
<tr>
<th>العلاجات</th>
<th>السرعة</th>
<th>نوع الكرة</th>
<th>المقارنة</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ay</td>
<td>ax</td>
<td>vy</td>
</tr>
<tr>
<td></td>
<td>numerical values</td>
<td>numerical values</td>
<td>numerical values</td>
</tr>
<tr>
<td></td>
<td>*867.59</td>
<td>*149.22</td>
<td>*61.57</td>
</tr>
<tr>
<td></td>
<td>*872.00</td>
<td>*133.78</td>
<td>*57.64</td>
</tr>
<tr>
<td></td>
<td>*811.09</td>
<td>*168.23</td>
<td>*55.1</td>
</tr>
<tr>
<td></td>
<td>*878.57</td>
<td>*143.77</td>
<td>*6.26</td>
</tr>
<tr>
<td></td>
<td>*84.89</td>
<td>*444.50</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>*84.09</td>
<td>*149.92</td>
<td>*61.57</td>
</tr>
<tr>
<td></td>
<td>*84.87</td>
<td>*159.82</td>
<td>*62.04</td>
</tr>
<tr>
<td></td>
<td>*149.72</td>
<td>*461.07</td>
<td>*6.52</td>
</tr>
<tr>
<td></td>
<td>*43.3</td>
<td>*128.61</td>
<td>*61.57</td>
</tr>
<tr>
<td></td>
<td>*668.27</td>
<td>*173.76</td>
<td>*61.57</td>
</tr>
<tr>
<td></td>
<td>*772.50</td>
<td>*133.78</td>
<td>*57.64</td>
</tr>
<tr>
<td></td>
<td>*66.46</td>
<td>*169.46</td>
<td>*62.04</td>
</tr>
<tr>
<td></td>
<td>*43.74</td>
<td>*161.85</td>
<td>*6.52</td>
</tr>
<tr>
<td></td>
<td>*56.88</td>
<td>*346.56</td>
<td>*61.57</td>
</tr>
<tr>
<td></td>
<td>*150.09</td>
<td>*173.76</td>
<td>*61.57</td>
</tr>
<tr>
<td></td>
<td>*868.57</td>
<td>*149.22</td>
<td>*61.57</td>
</tr>
<tr>
<td></td>
<td>*872.00</td>
<td>*133.78</td>
<td>*57.64</td>
</tr>
<tr>
<td></td>
<td>*811.09</td>
<td>*168.23</td>
<td>*55.1</td>
</tr>
<tr>
<td></td>
<td>*878.57</td>
<td>*143.77</td>
<td>*6.26</td>
</tr>
<tr>
<td></td>
<td>*84.89</td>
<td>*444.50</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>*84.09</td>
<td>*149.92</td>
<td>*61.57</td>
</tr>
<tr>
<td></td>
<td>*84.87</td>
<td>*159.82</td>
<td>*62.04</td>
</tr>
<tr>
<td></td>
<td>*149.72</td>
<td>*461.07</td>
<td>*6.52</td>
</tr>
<tr>
<td></td>
<td>*43.3</td>
<td>*128.61</td>
<td>*61.57</td>
</tr>
<tr>
<td></td>
<td>*668.27</td>
<td>*173.76</td>
<td>*61.57</td>
</tr>
<tr>
<td></td>
<td>*772.50</td>
<td>*133.78</td>
<td>*57.64</td>
</tr>
<tr>
<td></td>
<td>*66.46</td>
<td>*169.46</td>
<td>*62.04</td>
</tr>
<tr>
<td></td>
<td>*43.74</td>
<td>*161.85</td>
<td>*6.52</td>
</tr>
<tr>
<td></td>
<td>*56.88</td>
<td>*346.56</td>
<td>*61.57</td>
</tr>
<tr>
<td></td>
<td>*150.09</td>
<td>*173.76</td>
<td>*61.57</td>
</tr>
</tbody>
</table>

** دالة عند مستوى 0.05**

يتضح من جدول رقم (8) والذي الخاص بالمقارنات المتعددة بين أنواع كرة تس الطاولة البلاستيكية الجديدة خلال التجربة التي تم استخدامها حيث يتضح وجود فرق معنوي بين النوع الأول وباقى الأنواع معا، على النوع السادس في قيمة المحور الأفقيX، قيمة المحور الرأسيةY، وأيضاً في قيمة متحوري الزمن T، بينما عند مقارنة النوع الثاني، الثالث، الرابع، الخامس، السادس بباقي المتغيرات لم يتضح فروقاً معنويًا سوى بين النوع الأول والحادي السادس عند مستوى 0.05 لصالح النوع السادس، وبالرغم لجدول رقم (9) يتضح نفوق النوع السادس دونك +4 بدون حز Donic +، بيدون حز على النوع الأول HANNO +4 دون حز
، وتوضح من جدول رقم (9) والخاص بالمقارنات المتعددة بين أنواع كرة تنس الطاولة البلاستيكية الجديدة خلال التجربة التي تم استخدامها حيث يوضح وجود فرق معنوي بين النوع الأول وباقي الأنواع عند النوع السادس في قيمة السرعة f، قيمة السرعة v، وأيضا قيمة المعدلات الأفقية ax, v-axis الرأسية وv-axis الرأسية بالنسبة للنوع الثاني، الثالث، الرابع، الخامس، السادس بسبب المتغيرات لم تمتثل فروقًا معنوية سواء بين الأول والسادس أيضاً عند مستوى 0.05 لصالح النوع السادس، وبالرغم إلى HANNO +0.4 بدون حزعلى النوع الأول دونك +0.4 بدون حز Donic .

- مناقشة النتائج المتعلقة بالسؤال الثاني: ما أسرع (الفرؤ) نوع من أنواع كرة تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال +0.4 مللي (بالحز، وبدون الحز)؟

جدول (10)

<table>
<thead>
<tr>
<th>النوع</th>
<th>الاحتراف المعياري</th>
<th>الموسط السباعي مللي (الجيل الثالث)</th>
<th>متغيرات النتائج</th>
</tr>
</thead>
<tbody>
<tr>
<td>دونك +0.4</td>
<td>Donic</td>
<td>877.898</td>
<td>دونك +0.4 مللي بدون حز</td>
</tr>
<tr>
<td>بيلوس +0.4</td>
<td>palio</td>
<td>738.388</td>
<td>دونك +0.4 مللي بدون حز</td>
</tr>
<tr>
<td>كاميس +0.4</td>
<td>Kamas</td>
<td>677.968</td>
<td>دونك +0.4 مللي بدون حز</td>
</tr>
<tr>
<td>دانياس +0.4</td>
<td>Danniass</td>
<td>665.429</td>
<td>دونك +0.4 مللي بدون حز</td>
</tr>
<tr>
<td>تيبر +0.4</td>
<td>Tibhar</td>
<td>665.429</td>
<td>دونك +0.4 مللي بدون حز</td>
</tr>
<tr>
<td>سافيرو +0.4</td>
<td>Saffiro</td>
<td>640.360</td>
<td>دونك +0.4 مللي بدون حز</td>
</tr>
<tr>
<td>هانو +0.4</td>
<td>Hanno</td>
<td>640.360</td>
<td>دونك +0.4 مللي بدون حز</td>
</tr>
<tr>
<td>المجموع</td>
<td></td>
<td>3672.495</td>
<td>بدون حز 640.360</td>
</tr>
</tbody>
</table>

يتضح من جدول (10) والخاص بالمتوسط الاحترافي والاختلافات المعماري للأنواع المختلفة للسرعة النهائية للكرة تنس الطاولة البلاستيكية الجديدة في المرحلة الثانية فقد تراوحت السرعة النهائية للكرة ما بين HANNO (576.98) و576.98 نس زا /الساعة (السرعة القصوى الثانية فقط وكان النموذج السادس HANNO +0.4 بدون حز، وبلغ 70.05 نس زا/ث متوفقاً على بقية الأنواع في الدراسة.

السرعة النهائية لـ 6 أنواع كرة تنس الطاولة البلاستيكية الجديدة

(الجيل الثالث) ذات ال +0.4 مللي (بالحز، وبدون الحز)
جدول (11)

تحليل التباين في اتجاه واحد بالنسبة للسرعة النهائية لكرة نتس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال +4 مللي في المرحلة الثانية (بعد التصادم)

<table>
<thead>
<tr>
<th>قيمة (ف)</th>
<th>متوسط المربعات</th>
<th>درجات حرية</th>
<th>مجموع المربعات</th>
<th>مصدر التباين</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.319</td>
<td></td>
<td></td>
<td></td>
<td>بين المجموعات</td>
</tr>
<tr>
<td></td>
<td>198,665.235</td>
<td>5</td>
<td>11176.603</td>
<td></td>
</tr>
<tr>
<td></td>
<td>260,4184</td>
<td>6</td>
<td>51193.102</td>
<td>داخل المجموعات</td>
</tr>
<tr>
<td></td>
<td>124,477,136</td>
<td>11</td>
<td></td>
<td>المجموع</td>
</tr>
</tbody>
</table>

* دالة عند مستوى 0.05

يتضمن من جدول (11) أن هناك فروق دالة إحصائياً عند مستوى 0.05 لأنواع كرة نتس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال +4 مللي في المرحلة الثانية (بعد التصادم)

جدول (12) مقاولة بين أنواع كرة نتس الطاولة البلاستيكية الجديدة المختلفة للسرعة النهائية في المرحلة الثانية باستخدام LSD (بعد التصادم)

<table>
<thead>
<tr>
<th>نوع الكرة</th>
<th>السرعة النهائية للمرحلة الثانية</th>
</tr>
</thead>
<tbody>
<tr>
<td>النوع الأول</td>
<td>198,665.235</td>
</tr>
<tr>
<td>Donic</td>
<td>2</td>
</tr>
<tr>
<td>بدون حز</td>
<td>3</td>
</tr>
<tr>
<td>النوع الثاني</td>
<td>364,1051</td>
</tr>
<tr>
<td>Palio</td>
<td>4</td>
</tr>
<tr>
<td>بدون حز</td>
<td>5</td>
</tr>
<tr>
<td>النوع الثالث</td>
<td>246,0313</td>
</tr>
<tr>
<td>DHS</td>
<td>6</td>
</tr>
<tr>
<td>بالحز</td>
<td>7</td>
</tr>
<tr>
<td>النوع الرابع</td>
<td>441,3322</td>
</tr>
<tr>
<td>Tibhar</td>
<td>8</td>
</tr>
<tr>
<td>بالحز</td>
<td>9</td>
</tr>
<tr>
<td>النوع الخامس</td>
<td>455,1416</td>
</tr>
<tr>
<td>Rosanuo</td>
<td>10</td>
</tr>
<tr>
<td>بالحز</td>
<td>11</td>
</tr>
<tr>
<td>النوع السادس</td>
<td>014,041</td>
</tr>
<tr>
<td>Hanno</td>
<td>12</td>
</tr>
<tr>
<td>بدون حز</td>
<td>13</td>
</tr>
</tbody>
</table>

* دالة عند مستوى 0.05
يتضح من جدول (16) (7) والخاص بالمقارنات المتعددة بين الأنواع المختلفة لكرة تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) ذات ال + 04 مللي في المرحلة الثانية (بعد التصادم) التي تم استخدامها، حيث ينضج وجود فرق معنوي بين النوع الأول وبقية الأنواع ماعدا النوع السادس في قيمة السرعة النهائية للمرحلة الثانية، بينما عند مقارنة النوع الثاني والثالث والرابع، والخامس، السادس لم ينضج فروق معنوية سوى بين النوع الأول والسادس، وبالرجوع إلى جدول رقم (10) يتضح تفوق النوع السادس HANNO + 404 دون حز دونك + 44 دون حز حيث بلغ بمتوسط سرعة 0267 سم/ث، ومن الجدول (7) والخاص بتذكير مصدر التباين نجد أنه يرجع إلى تأثير نوع الكرة فقد بلغvy الرأسي والرئوي 0267 سم/ث عند المحور الأفقي (التأتي) في تأثير التفاعل الإحصائي بين نوع الكرة وسرعة القذف والمرحلة (مراحل التحليل) فقد بلغvy الرئوي والرئوي 0267 سم/ث عند المحور الأفقي (التأتي) في مستوى معنوي 001 ودال عندvy السرعة الأولى والرئوي والرئوي 0267 سم/ث والخاص بالمرحلة الثانية للسرعة النهائية (بعد التصادم) نجد أن أنواع كرات تنس الطاولة المستخدمة في التجربة فقد بلغت 0778 سم/ث، ومن متوسط سرعة النوع الأول Donic + 404 مللي الجديده دون حز 0787 سم/ث، والثاني Palio + 404 مللي الجديده دون حز 0398 سم/ث، والثالث DHS يتيح + 404 مللي الجديده بدون حز 0839 سم/ث.

وتشير تحليل اختلافات الفروق بين النوع السادس HANNO + 404 مللي الجديده دون حز 0569 سم/ث، والثاني Palio + 404 مللي الجديده دون حز 0679 سم/ث، والثالث DHS يتيح + 404 مللي الجديده بدون حز 0839 سم/ث، والثاني Palio + 404 مللي الجديده دون حز 0679 سم/ث، والثالث DHS يتيح + 404 مللي الجديده بدون حز 0839 سم/ث، والثاني Palio + 404 مللي الجديده دون حز 0679 سم/ث، والثاني Palio + 404 مللي الجديذه دون حز 0839 سم/ث

وتجدر الإشارة إلى أن ذلك قد ينطوي على تشكيل الملعب، ويعتبر رياضات متعددة سرعة الدفع (الجيل الثاني) المبني على الماء للحتي أي مركبا تنفيذية بنشاط، ويفتقد هذا مع إمكانيات أنزوني وإخرون

مراجعات

1. Donic
2. Palio
3. DHS
4. Tibhar
5. XUHAOF0
6. HANNO
7. Ryan Casima
8. Malagoli Lanzoni&ather

(4) Zartin Hughes 2071، لانع ضرب الكرة بالمضرب، يحتم ما يسمى بظاهرة الضغط الاستاتيكي وهو ضغط الكرة على حجبيات المضرب سواء ملقوية للداخل أو للخارج، وإذا اشتبه هذه الظاهرة لها تأثير على السرعة والدوران (13) 11، ويرى الباحثون أن السرعة السابقة هي ناتج كرة تنس الطاولة، وإذا كنت لاحظت أي لاصق زيادة السرعة المكاني في المضرب الخاص باللاعب، وإذا افترضت تلك السرعات بآدة وقوة اللاعبين تؤدي إلى الفوز بالنقط، ويفتقد ريان كاسيم (2011) ان اصًاص السرعة (الجيل الثاني) المبني على الماء للحتي أي مركبا تتيلة بشان صحة لاعبيين، ويفتقد هذا مع إمكانيات أنزوني وإخرون

(2013) Malagoli Lanzoni&ather
تتنس الطاولة باستعمال الضربات المختلفة مثل الضربة الساحقة قد بلغ (0.5) ميال للأجواء فقط
(13:09) (13:08)

ويرجع الباحثون الاختلاف في متوسطات السرعة النهائية للكرة ، وعلى الرغم من اعتماد الاتحاد الدولي لتتنس الطاولة في الوقت الراهن تلك الأنواع المختلفة من الكرات المختلفة في ITTF (poly balls) مكوناتها الكيميائية وهي البلاستيكية الجديدة
، إلا أنها تختلف في النسب المئوية ، ويؤكد الباحثون أن استخدام كرة تتنس الطاولة البلاستيكية الجديدة ذات ال 04 مللي الميللياتملب (الجيل الثالث) عند ارتباطها بالأنواع المختلفة من الدورات أوـ Side Spin ، يكون مفيد بشكل خاص مع لاعبي الهجوم الذين يتميزون بالدوران Top والخليفة Back الخلفية والعلوية والجانبية.

ويتضح من جدول (8 , 9) والخاص بالمقارنات بالنسبة للمحور الأولي x والرأسيّ y والزمن t وكذلك للسرعات a والاعتلالات s باستخدام أقل فرق معنوي LSD فإن تزايد السرعات HANO + 04 مللي الجيدة بدون LSD t وسلم الاتصال بالندس الساخن ينصح بالدراسة بين المضرب والكرة يلعب دور حاسمًا

وبان الاحتكاك (الاحتال) بين المضرب والكرة في الاداء كرات تتنس الطاولة المطلوبة في الأداء كرات تتنس الطاولة، الا ان التحكم (control) أيضا مطلوب في الاحتكال على الجهة الطرازية الوراثية فلولا يوجد سرعة بدون تحكم أو الاعكس صحيح في رياضة تتنس الذاكرة ، فقد أظهرت نتائج ى. كاووزوي . د . سوزوكي (2005) أن زمن الاحتكال قد انخفض نتيجة ان معدل طاقة الارتداد للمضرب قد انخفض بشكل ملحوظ مع زيادة سرعة التصاميم ، و رغم أن ذرع اللاعب كان لها تأثير واضح على الكتلة المخفضة للمضرب ، ولكن لا تأثير له على سرعة الارتداد الكرة لأن كتلة الكرة أصغر من أن تكون بكتلة المضرب (11:279)

ويؤكد الباحثون أن انتزاع قصر زمن الاحتكال بأنواع مختلفة من الدورات يصعب من spin ، مهمة اللاعب المنافس من ضرب الكرة في التوقيت الصحيح بين ضرب الكرة ومكانها.

يتضح من الجداول (10, 11, 12) أن أنواع كرات تتنس الطاولة المستخدمة في التجربة احتال النوع السادس HANO + 04 مللي الجيدة بدون حزق بلغت متوسط سرعة دونك + 4 مللي الجيدة Donic 90.705 سم/ث وجاء في المرتبة الأولى ، بل هي النوع الأول palio بدون حز بمستوى سرعة 772.898 سم/ث واحتل المرتبة الثانية ، بل هي النوع الثاني palio + 4 مللي الجيدة بدون حز 83.598 سم/ث واحتل المرتبة الثالثة بل هي النوع الخامس RASAFO + 04 مللي الجيدة بالحز 94.981 سم/ث واحتل المرتبة الرابعة ،
لبيئة الاتجاه الرابع تظهر 400 مللي المجددة بالجزء الرئيسي الخامسة بجودة سريعة 85.5.429 سم/ث، ولبيئة الفئات الثالثة DHS، لبيئة المجددة بالجزء الرئيسي 96.9.028 سم/ث،

، حيث استخدام المبحوثين عدد (1) جلدة من نوع واحد التي لم يسبق استخدامها في التمرين أو المباريات باستهداف المضرب الثالث، حتى تصبح السرعة النهائية خالية وليس تحت تداخل عوامل أخرى وترجمت لاسي السرعة المئوية في جلدة المضرب الواحد داخل حبيبات الجلدة ،

ومحاولة عزل التداخل بين العوامل الأخرى المؤثرة في السرعة النهائية ،

يتسخ من جدول (10) لأنواع مختلفة للكمية النهائية لكرة تس الطاولة البلاستيكية الجديدة ذات ال (400 ملليجبل الثالث) في المرحلة الثانية فقد تراوح المجددة السرعة النهائية لكلم ما بين (74.6.9.028 سم/ث لسرعة القذف الثانية فقط، مما بعيان انخفاض السرعة النهائية بالنسبة للجبل الثالث من البلاستيكية ال (400 مللي) بنسبة مابين (6 و 10%) مقارنة باخرون Yuji &others في الجبل الثاني (سياستات 400 مللي) في دراسة يُجى يمتوتو وأخرون

، إن الانطباع الأول عند سماع صوت كرة تنس الطاولة البلاستيكية الجديدة ذات ال (400 ملليجبل الثالث) عند اصتمامها بالمضرب إنها مسكونة مقارنة بكرة السيلولوز القديمة (400 ملليجبل الثاني)، وعد مقارنة الصلابة نجد أشكال صلابة كمية في الجبل الثاني لكلم صلابة.

، فإن سرعة ما بعد التصانيم لكرات تنس الطاولة البلاستيكية الجديدة ذات ال (400 ملليجبل الثالث) كانت أبطأً مقارنة بالكرة السيلولوز (400 ملليجبل الثاني)، ويمكن أن نعزى إلى حقيقة أن صلابة الكرة كانت أكبر، كما كان فقدان الطاقة للكرة ومتطاوت أثناء التصالم أكبر عند سرعات التصالم الأقل، كما لوحظ في التحاليف المستبسطة من التحاليف عند تضرب الخباكة (عن طريق الخطأ)، فإنه تستمر عادة ببرورة لمدة 3 أو 4 ثوان، ويرى الباحثون

إشارة إلى حقيقة أن اللعبة سوف تكون أبطأ.

ويُؤكد الباحثون عندما تكون الكرة أبطأً سيكون لدي اللاعب المزيد من الوقت لتعديل زاوية المضرب، ووضع المزيد من الدوران في الكرة، إلا أننا لا نزالنا في حاجة لل المزيد من الأبحاث.
لفحص سمات وتأثير خواص كرة تنس الطاولة الجديدة، وعلاقتها بخصائص الكرة وتأثير ذلك على الأداء العام لرياضة تنس الطاولة، لكن儿 درجات الحرارة لها تأثير على كرة تنس الطاولة الجديدة 4 مللي،
ولذا فإن الفوز في رياضة تنس الطاولة يحدث نتيجة اشترك عوامل متعددة منها العوامل التكنولوجية التي تلعب دوراً هاماً مع طفرة الأدوات الرياضية المستخدمة.

الاستنتاجات:

طبيعة التحليل الكنماتيكي والمعالجات الإحصائية يمكن استنتاج ما يلي:
١- تم التوصل إلى ترتيب مجموعة أعلى جودة في الكرة البلاستيكية الجديدة (الجيل الثالث) قيد الدراسة.
٢- اختلاف قيم السرعة الرأسية والأفقية والعجلات الرأسية والأفقية وكذلك الأمزنة خلال استخدام (١) السناة انواع المختلفة للكرة البلاستيكية الجديدة ذات ال + ٤ مللي (الجيل الثالث) قيد الدراسة.
٣- تراوحت السرعة النهائية للكرة ما بين (٠.٠٠٧ - ٠.٠٨٧) مث للكرة البلاستيكيية الجديدة ذات ال + ٤ مللي (الجيل الثالث) قيد الدراسة.
٤- إن أفضل الأنواع هو النوع السادس HANNO ٤ مللي الكرة الجديدة بدون حز فقد بلغت متوسط سرعة ٠.٠٠٧ مث والثاني Donic الذي له سرعة ٠.٠٨٧ مث وواحت السرعة اللمانية palio الذي له السرعة ٠.٨٧ مث وواحت المرتبة الثانية palio ٤ مللي الكرة الجديدة بدون حز على الكرات بالجز.

التوصيات:

وفي حدود ما أمكن التوصل إليه من نتائج الباحثين بما يلي:
١- استخدام نتائج التحليل الكنماتيكي في عمليات تقويم كرة تنس الطاولة البلاستيكية الجديدة ذات ال + ٤ مللي (الجيل الثالث) كمحك للأنواع الأخرى من الكرات.
٢- كرة تنس الطاولة البلاستيكية الجديدة (الجيل الثالث) تحتاج إلى تعديلات كبيرة لثلاثي اللاعبين.
3- ضرورة إحداث تعديلات في مكونات جلد المضربات (التكسيات) وقاذف الكرات لقوة سحب الكرة الجديدة

4- على الاتحاد الدولي لتنس الطاولة استخدام أدوات جديدة ومعايير علمية للتأكد من تطبيق المكونات البلاستيكية للكرة الجديدة ذات ال+ + 0 مللي (الجيل الثالث).

5- ضرورة تصنيع الكرة البلاستيكية الجديدة ذات ال + + 0 مللي (الجيل الثالث) في جمهورية مصر العربية واعتمادها من الاتحاد الدولي لتنس الطاولة.

6- إجراء دراسة مماثلة لمعرفة أثر الكرات الجديدة ذات ال+ + 0 مللي الجديدة على الجوانب الممارسة والخططية للاعب تنس الطاولة.

7- تحسين نوعية الكرة البلاستيكية الجديدة ذات ال + + 0 مللي (الجيل الثالث) لوضع حدود للسرعة (الحد الأقصى - الحد الأدنى) وذلك من خلال الترکيبات الكيميائية وتحديدها بنسب ثابتة من قبل الاتحاد الدولي لتنس الطاولة.

8- الاستفادة من نتائج البحث في برامج تدريب الناشئين والناشطين بمراحله السنوية المختلفة.

قائمة المراجع:

أولاً - المراجع العربية:

ثانيًا المراجع الأجنبية:

4- ITTF Approved 40mm Table Tennis Balls, The Ball, ITTF Technical Leaflet T3, 2014.

6- Kei Kamijima, Yukihiko Ushiyama, and Masaaki Ooba: Effect of different playing surfaces of the table on the ball bounces in table tennis, international Journal of Table Tennis Sciences, No.7, p32-36, 2013.

7- Kondria, M., Medved, V, M., Furjan, G. and Slatina, ek: Kinematic analysis of top spin stroke with balls of two different sizes, 10th, ITTF Sports Science Congress, University of Zagreb, Croatia, 2007.

11- Y. Kawazoe and D. Suzuki: Comparison of the 40 and 38 mm table tennis balls in terms of impact with a racket based on predicted impact phenomena, the Eighth International Table Tennis Federation Sports Science Congress, France, p 276-281, 2005.

12- Yu ji motm. Kazuto yoshida andno buoya: Rebound Characteristics of new Table Tennis ball - Differences between the 40mm (2.7g) and 38mm (2.5g) balls, International Journal of Table Tennis Sciences, No. 5, p233-243, 2004.